go to contents go to side menu go to main menu

main menu area

main menu area

Innovative University Changing the World through Convergence

Embed to SNS

Research News

Overcoming Cardiovascular Disease with a Magnetically-Steerable Guidewire Microrobot

  • 조회. 868
  • 등록일. 2019.03.05
  • 작성자. Public Relations Team

Overcoming Cardiovascular Disease with a Magnetically-Steerable Guidewire Microrobot
- DGIST Professor Hongsoo Choi’s team developed an attachable guidewire that can move and steer towards a desired direction inside complicated blood vessels
- Will contribute to increasing the success rate of heart disease treatment with a shorter cardiovascular disease surgery time and higher accuracy

 

▲Professor Hongsoo Choi (middle), Ph.D. student Seongwoong Jeon (left), and Ph.D. student Kangho Kim (right) in the Department of Robotics Engineering at DGIST who developed the attachable guidewire microrobot


DGIST research team succeeded in developing a microrobot that can reach the accurate location of cardiovascular disease such as the Chronic Total Occlusion1) by moving and steering the microrobot towards a desired direction inside complicated blood vessels. This research is expected to increase the success rate of treatment and shorten the time of cardiovascular disease surgery.

DGIST announced on February 27 that Professor Hongsoo Choi’s team in the Robotics Engineering Department developed the ‘Magnetically Controlled Microrobot’ that can enhance the success rate of CTO treatment among myocardial infarctions through a joint research with Professor Byung-Ju Yi’s team at Hanyang University and Professor Bradley J Nelson’s team at idgenössische Technische Hochschule Zürich in Switzerland.

Since the guidewire used for percutaneous coronary intervention2), which opens up the obstructed blood vessels, is controlled manually by a surgeon to change its direction and location, the success rate and speed of surgery had depended on the surgeon’s skill. It had been difficult to control the exact location and direction as the surgeon had to manually set and push the guidewire with bent ends inside complex blood vessels or junction.

To overcome this limitation, Professor Choi’s team applied flexible and biocompatible polymer as well as neodymium magnet that can control the direction and location with as external magnetic field. Using this, the team developed a cylindrical microrobot with a diameter of 500㎛ and length of 4mm and attached it at the end of guidewire. The team developed an attachable guidewire soft microrobot that can steer the guidewire towards a desired direction by controlling the microrobot with the external magnetic field and enable a rectilinear motion through Master-Slave System3).
The research team also succeeded in an experiment which mathematically calculates and predicts the microrobot’s motion and penetrates complex blood vessels through the feedforward method to control the result, in order to realize flexible, nonlinear motions of microrobot. The team also succeeded in an experiment to reach a desired area in a 3D blood vessel model that imitates the coronary artery of heart and the biocompatibility of microrobot from a cell survival experiment.

The attachable guidewire microrobot developed by the research team enables rectilinear motions through precise control by magnetic field and Master-Slave system. This can reach a desired area inside the complex blood vessel much faster, which will help overcome the percutaneous coronary intervention of existing surgical method and increase the success rate and efficiency of surgery. It will also reduce the exposure of patient and surgeon to radiation from xray as well as blood vessel damage of patients because it can reach the disease part more quickly than the existing method.

Professor Hongsoo Choi in the Department of Robotics Engineering said “Compared to the existing method, using an attachable guidewire microrobot will shorten the time for heart disease surgery and increase the success rate by enabling the surgeon to find the cause of disease more accurately and faster for a stable surgery. Our research team will work harder to conduct follow-up research with related companies and develop products that can be used in medical sites.”

Meanwhile, this R&D result was published as a cover paper on ‘Soft Robotics’, the most-renowned international journal in robot research, and was performed with the support by Ministry of Trade, Industry, and Energy as well as the Ministry of Science and ICT.

 

1) Chronic Total Occlusion (CTO): Occurs when the coronary arteries become blocked as a result of atherosclerosis. 
One of the causes of cardiovascular diseases such as myocardial infarction if outbreaks in the heart.
2) Percutaneous coronary intervention: A non-surgical procedure used to treat narrowing (stenosis) of the coronary arteries of the heart found in coronary artery disease. After accessing the blood stream through the femoral or radial artery, an interventional cardiologist can perform a coronary angioplasty in which a deflated balloon is advanced into the obstructed artery and inflated to relieve the narrowing; certain devices such as stents can be deployed to keep the blood vessel open. Its success greatly depends on the surgeon’s skill and can cause higher exposure to radiation as the surgeon injects a contrast medium using x-ray for the procedure.
3) Master-Slave System: The main control device (handle) used by a surgeon is called master, while the device (wheels) that moves remotely by the master’s movement or instruction is called slave. 


For more information, contact: 
Hongsoo Choi, Professor
Department of Robotics Engineering
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
E-mail: mems@dgist.ac.kr

Associated Links
Research Paper on Journal of Soft Robotics
https://www.liebertpub.com/doi/10.1089/soro.2018.0019
Professor’s Laboratory of Robotics Engineering at DGIST
https://mems.dgist.ac.kr/

Journal Reference
Sungwoong Jeon, Ali Kafash Hoshiar, Kangho Kim, Seungmin Lee, Eunhee Kim, Sunkey Lee, Jin‐young Kim, Bradley J. Nelson, Hyo-Jeong Cha, Byung-Ju Yi, Hongsoo Choi, "A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network", Soft Robotics, Vol. 6, Issue 1, Feb 13th 2019